


MY GPGPU EXPERIENCE - TL;DR

- OBJ: Move a nonlinear MRI data fitting process from the CPU to the GPU.
- Where? Loma Linda University Medical Center
- How? CUDA.
- Why? Because there are many data sets (30-100+), each taking up to 30 hours by CPU.
- Hotel? Trivago
- Result: It got very fast.

	CPU Time (sec)	GPU Time (sec)	Approximate Acceleration
DCE – Patlak Model	124,645	20.7	6014x
DCE – Two			
Compartment Exchange	112,817	138.3	816x
Model (2CXM)			
Dixon – Three	417.7	43.5	9.6x
Parameter Fitting	417.7	43.3	J.0X

GPU VS CPU

CPU

- Fast caches (optimal data reuse)
- Fine branching granularity
- Lots of different processes/thread
- High performance on a single thread of execution

Conclusion: CPUs are optimal for **task** parallelism
GPUs are optimal for **data** parallelism

GPU

- Lots of math units; ALU-heavy
- Fast access to onboard memory
- Run a program on each fragment/vertex
- High throughput on parallel tasks

SOURCES • https://blogs.nvidia.com/blog/2018/03/28/archeoliboare.gts/ • https://en.wikipedia.org/wiki/Guneral.purpose_computing_on_graphics_processing_units • https://en.wikipedia.org/wiki/GUDA • https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf • https://superuser.com/questions/308771/why-are-we-still-using-cpus-instead-of-gpus • https://graphics.stanford.edu/~mhouston/public_talks/R520-mhouston.pdf • https://www.tacc.utexas.edu/documents/13601/88790/8Things.pdf • https://submissions2.mirasmart.com/ISMRM2020/ViewSubmissionPublic.aspx?sei=ZluGiDQqQ

